Code No.: 16342 N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) VI-Semester Main Examinations, May/June-2023

Digital Signal Processing

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	СО	PO
1.	Sketch the signal 5u[n]+3u[n+3].	2	2	1	1,2,3,12
2.	Determine whether the signal $x[n]=\sin[n/8]\sin[n\pi/8]$ is periodic or aperiodic. If periodic, calculate its time period.	2	2	1	1,2,3,12
3.	Differentiate Discrete Fourier Transform with Fourier Transform.	2	2	2	1,2,3,12
4.	Compute the number of complex multiplications and additions required in performing 32 point FFT.	2	2	2	1,2,3,12
5.	Differentiate Butterworth and Chebyshev filters.	2	2	4	1,2,3,12
6.	Draw a graph between analog and digital angular frequencies in Impulse invariant transformation and Bilinear transformation.	2	2	4	1,2,3,12
7.	Define phase delay and group delay in Finite Impulse Response filters.	2	1	4	1,2,3,12
8.	Write the equation for Hamming window function.	2	1	4	1,2,3,12
9.	In a Buck – Boost converter, draw the graph between duty cycle and voltage gain.	2	2	5	1,2,3,12
10.	List the objectives of controller in Buck – Boost converter and also identify the objective that has higher priority.	2	2	5	1,2,3,12
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Compare digital signal processing and analog signal processing of signals.	4	2	1	1,2,3,12
b)	Check the properties causality, linearity, shift invariance and stability for the system with the equation $y[n]=x[n]+nx[n-1]$.	4	3	1	1,2,3,12
2. a)	Compute convolution of the signals $x[n]=\{1,1,2,2,3,3,4,5\}$ and $h[n]=\{2,-4\}$ using overlap add method.	4	3	3	1,2,3,12
b)	Determine the 8 point Fast Fourier Transform of the signal x[n]={1,-1,2,-2,6,-4,3,-5} using Radix-2 Decimation in Time algorithm.	4	3	2	1,2,3,12

Code No. : 16342 N

	Design a low pass IIR digital filter using Chebyshev, with the following specifications:	5	4	4	1,2,3,12
P	eass band ripple $\leq 0.5 dB$				
S	top band ripple ≥ 40dB				
F	Pass band frequency: 1.2 kHz				
5	Stop band frequency: 2 kHz				
	Sampling frequency: 8 kHz				
	Obtain the direct form – II realization of the filter with difference equation	3	3	4	1,2,3,12
	V[n] = 0.75y[n-1]-0.125y[n-2]+x[n]+0.33x[n-1]				
4. a)	Design a linear phase FIR high pass filter using Hamming window with desired frequency response	5	4	4	1,2,3,12
	$H_d(e^{j\omega}) = \begin{cases} e^{-j3\omega} \text{ for } -\pi \leq \omega \leq -\omega_c \text{ and } \omega_c \leq \omega \leq \pi \\ 0, \text{ otherwise} \end{cases}$				
	Assume N=7 and $\omega_c = 0.8\pi$	2	2	4	1,2,3,12
b)	Obtain the linear phase realization of the Finite Impulse Response filter with impulse response $h[n]=\{2,1,4,3,4,1,2\}$.	3	3	4	
	Explain the peripherals associated with TMS320LF2407 DSP controller.	4	1	5	1,2,3,12
b)	With a neat block diagram, explain about the control system implemented to control BLDC motor using TMS320LF2407 DSP controller.	4	1	5	1,2,3,12
16. a)	Determine the zero state response for the system described with the difference equation	4	3	1	1,2,3,12
	$y[n]-3y[n-1]-4y[n-2]=x[n]+2x[n-1]$ for the input $x[n]=4^nu[n]$				
b)	Explain how linear convolution of two signals can be obtained using Discrete Fourier Transform.	4	1	2	1,2,3,12
17.	Answer any two of the following:			0521	1001
a)	Differentiate IIR filters with FIR filters.	4	2	4	1,2,3,1
b)	Obtain the frequency response of an FIR filter with symmetrical impulse response and odd length.	4	2	4	1,2,3,1
c)	With a neat block diagram, explain about multiplexing in TMS320LF2407 DSP controller.		1	5 Outcor	

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

-	Blooms Taxonomy Level – 1	25%
1)	Blooms Taxonomy Level – 2	35%
11)	Blooms Taxonomy Level 2 & 4	40%
iii)	Blooms Taxonomy Level - 3 & 4	
